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This is a sequel to a recent work of Gaudin,  who studied the classical 
equilibrium statistical mechanics of the two-dimensional Coulomb gas on a lat- 
tice at a special value of the coupling constant  F such that the model is exactly 
solvable. This model is briefly reviewed, and it is shown that the correlation 
functions obey the sum rules that characterize a conductive phase. A related 
model in which the particles are constrained to move on an array of equidistant 
parallel lines has simpler mathematics,  and the asymptotic behavior of its 
correlation functions is studied in some detail. In the low-density limit, the 
lattice model is expected to have the same properties as a system of charged, 
hard disks; the correlation functions, internal energy, and specific heat of the 
latter are discussed. 

KEY WORDS:  Coulomb systems; solvable models; correlations; sum rules; 
charged, hard disks. 

1. I N T R O D U C T I O N  

A considerable amount of work has already been done on the equilibrium 
statistical mechanics of the two-dimensional Coulomb gas with logarithmic 
interactions: the interaction potential between two particles as a function of 
their distance r is -t-e 2 In(r/a), where a is some arbitrary length scale, which 
fixes the zero of energy. At the inverse temperature fl the dimensionless 
coupling constant is F =  fie 2. In this paper we consider a two-component 
plasma; then the attraction between oppositely charged particles competes 
with the thermal motion and gives rise to two kinds of phenomena that do 
not occur in a one-component plasma. In the first place, at short distances 
this attraction makes the partition function diverge when F >  2: the system 
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becomes unstable against the collapse of pairs of oppositely charged par- 
ticles, so that the point-particle model (I) is well-behaved only for F < 2 .  
However, if the collapse is avoided by some short-range repulsion (hard 
cores, for instance), the model remains defined for lower temperatures. 
Then, for F > 4  the long range of the Coulomb attraction binds positive 
and negative particles in pairs of finite polarizability. Thus, at some critical 
value F c ~ 4  the system undergoes the Kosterlitz-Thouless (2) transition 
between a high-temperature ( F < 4 )  conductive phase and a low-tem- 
perature ( F >  4) dielectric phase. In the present paper, which is about the 
Coulomb gas at F =  2 (a value for which the system is believed to be in a 
conductive phase), the Kosterlitz-Thouless transition will not be discussed 
further. 

It has been known for some time that the two-dimensional Coulomb 
gas is equivalent to a Fermi field model, ~3 5) which turns out to be a free 
one when F = 2 .  However, the necessity of introducing a short-range 
repulsion causes difficulties. In a recent paper, Gaudin (6) was able to 
circumvent these difficulties by studying a lattice version of the Coulomb 
gas, which he devised to be exactly solvable at F =  2. 

Since at F =  2 we have at hand a solvable model, it is worth to study it 
further. The present paper is a sequel to Gaudin's work. In Section 2, we 
review his lattice model and supplement his results on several points. In 
Section 3, we consider a related model of charged point particles moving 
along an array of equidistant parallel lines. In Section 4, we study the 
continuum limit (small lattice spacing) and apply the results to a system of 
charged, hard disks at low density. 

In Appendix A, we describe a modified Debye-Hfickel theory, which is 
valid for the lattice model in the weak coupling limit F--* 0. In Appen- 
dix B, we revisit the equivalence of the Coulomb gas and free Fermi field 
models, at F =  2. 

2. THE G A U D I N  MODEL:  REV IEW A N D  C O M P L E M E N T S  

2.1. Def in i t ion of the Model  

In a lattice model no collapse can occur. In order to handle the 
charges according to their positions in an easily tractable way, Gaudin (6) 
introduced two interwoven sublattices X and Y, arranged as shown in 
Fig. 1. Positive (negative) particles of charge e ( - e )  sit on the sublattice X 
(Y); each site is occupied by no or one particle. The position of the ith site 
is defined by the complex number z~= xt + iy~, in terms of its Cartesian 
coordinates (xi, Yi). The interaction is -e21n( l z~-z i l /a )  between two 
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Fig. 1. The Gaudin model. Each site of the sublattice X (crosses) can be occupied by no or 
one positive particle; each site of the sublattice Y (dots) can be occupied by no or one 
negative particle. 

particles of the same sign and e21n(Iz~-z/l/a) between two particles of 
opposite sign. 

2.2. G r a n d  P a r t i t i o n  Func t ion  

Gaudin showed that, at F =  2, in terms of a fugacity parameter )o, the 
grand partition function Z has the remarkably simple structure 

In Z =  Tr[ln(1 + )~K)] (2.1) 

where K is an anti-Hermitic matrix, the elements of which are labeled by 
the sites and of the form 

a/(zi-  ~/) if sites i and j belong to 
(ziL K ]zj) = different sublattices 

0 otherwise 

Incidentally, this structure is very general and does not depend on the 
detail of the lattice geometry (it is only necessary to assume that one of the 
sublattices is invariant under a symmetry with respect to some axis). 

The eigcnvalues of K are + i  Ih(k)l, where h(k) is the Fourier trans- 
form of (x~+ iyiL K 10) calculated on the lattice. Therefore, the pressure is 
given by 

1 f~ d2k 22 / ~ p = l i m  ~ l n  Z =  (-~)2 ln[1 + lh(k)L 2 ] (2.2) 
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where s is the lattice area and N' the first Brillouin zone. With the 
geometry of Fig. 1, g is such that -)z/co < kx < )z/m, -)zr/co < ky < )zz/co, 
and 

2a I h(k)=  ~ co(m+inz , )exp - i - ~ ( k x m  
m,n 

(m,n odd) 

= 1 

+ k.vnv-1)] 

(2.3) 

where sd(u; k ) =  sn(u; k)/dn(u; k) is an elliptic function of the complex 
variable u, with the usual notation of Jacobi; its periods K and zK and its 
modulus k are determined by the ratio r of the sublattice periods. Rescaling 
2 in to/ ,  = 2(a/~o) zK2 and kx + iky into ~ + it/= (Kco/)z)(kx + ikx), one finds 
the pressure 

f 1 K d{ 
tip = 4K2(o 2 K ,K 

and the density 

dr/ln[1 +#2 Isd(~+it/;k)l 2] (2.4) 

P=l~ 0#-2--K-5--~m 2 -K d~ -~K d~/l~2+lsd(~+i~;k)12 (2.5) 

The equation of state is determined by (2.4) and (2.5). 

2.3.  C o r r e l a t i o n s  

The structure (2.1) of l n Z  enables to calculate the correlation 
functions of any order. One uses the standard method of introducing a 
fugacity 2(z~), which depends on the site. Then, (2.1) is replaced by 

In Z = Tr[ln(1 + A)] 

where the matrix A has elements 

(zi] A ]z j )=  2(z~)(5~1 K lSj) 

with 

(2.6) 

(2.7) 

Yi = zi if site i is a positive one 

5i = Yi if site i is a negative one 

(z7 is the complex conjugate of z). Let Ps be the maximum density for the 
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particles of one sign (with the geometry of Fig. 1, Ps = v/co2) - Using (2.6) 
and 

2(zk) ~ (zil A Izj) = 6zk.z,(zi[ A Izj) (2.8) 

one finds for the density of particles of one sign (number of such particles 
per unit area) 

= ps2(Zl  ) 0 ;~(~,) 2K ~ l n Z  =~ = p~(i,]  1--72K L51 ) (2.9) 

l i t  is easy to see that (2.5) is in agreement with (2.9).1 Using 

1 1 •A 1 

O2(zk) I + A  1+A02(zk )  I + A  
(2.10) 

one finds for the truncated two-body density 

O ( 2 ) T ( z 1 ,  Z 2 ) =  p2 /~ ( Z  1 ) "~(Z2) 
32 Z 

~32(Zl) g2(z2) in )-(zi) = 2 

2 ~ 2K 2K 
(2.11) 

By successive iterations, one finds for the truncated n-body density 

D ( n ) T ( Z l ' Z 2 ' " " Z n ) ~ - ( - - ) n + I  E B ( z i t ' Z i 2 ) ' " B ( Z i n ' Z i t )  
(il i2 " �9 - in ) 

where 

(2.12) 

2K 
B(zi, zj) = Ps(2,l ~ I2j) (2.13) 

and where the summation runs over all cycles (il i  z . . . in )  built with 
{ 1, 2,..., n}. 

This cyclic structure is similar to that in the case of the two-dimen- 
sional one-component plasma (7) at F =  2. 

The matrix elements (B functions) in (2.9), (2.11), and (2.12) can be 
obtained by using the eigenvectors (plane-wave-like) and eigenvalues 
___i Ih(k)l of the matrix K. Instead of z i, it may be convenient to use the 
notation ri--- (xi, yi) = (Re zi, Im z~) and a subscript e~ which is + ( - ) if 
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the site at re belongs to the positive (negative) sublattice. One finds for the 
B functions 

B++(re, rj)=B_ (r~, rj) 

f~ d2k 22 
= (2~) a 22 + [ f(k)[  2 exp[ ik .  ( r , - D ) ]  (2.14) 

B+ (r,, r j )=  -B+(r; ,  ri) 

(2rc)2 2z qC [-~-k)[ 2 exp [ ik �9 ( r i -  rfl] (2.15) 

where f ( k ) =  1/h(k) [see (2.3)]. When convenient, we shall use the 
notation 

P Te'  .... ( r , ,  r= ..... r . )  

for p(n)T(z1,  Z2,... , Zn). 
Since B+ + is real and symmetrical, p(Z)T is real, negative; on the other 

hand, p(~)r is real, positive. 
In the limiting cases considered in Sections 3 and 4, it will be shown 

that the truncated densities (2.12) have an exponential decay for large 
space separations. We conjecture that this exponential decay holds in 
general. 

2.4. S u m  Rules 

The correlation functions are expected to obey a variety of sum rules. 
Of very general validity is the compressibility sum rule, which reads 

here 

c3p c3p 
Z Z p =p p 
P~ j 

(2.16) 

This rule can be verified by using the structure of (2.9) and (2.11), but 
actually it is a consequence of the expressions of p and p(2)T as derivatives 
of in Z with respect to 2(zi). The compressibility sum rule can readily be 
generalized to higher order truncated densities. 

Another class of sum rules is associated with the existence of screening, 
a fundamental property of a conductor. Checking that these sum rules are 
satisfied (and they are!) provides a test that, at F =  2, the system is indeed 
in its conductive phase (the existence of exponential decay for the 
correlations being another indication). 
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A first screening rule states that a particle of the gas is screened by the 
other charges; thus, the charge-charge correlation function obeys 

t I J0s j J 
(ej = ei) (ej ~ el) 

This rule can readily be verified by expressing p and p(Z)T in terms of the B 
functions (2.14) and (2.15). 

The assumption that an external test charge is screened by the gas 
results in a second screening rule, the Stillinger-Lovett rule, (8) which 
involves the second moment of the charge-charge correlation function: 

Ps j j 
( ej = ei) ( e j ~  ei) 

2 1 
7~ fle 2 rc 

p(2+~(ri, r j ) ( r j - r i )  2] 

(2.18) 

Introducing again the B functions (2.14) and (2.15), we can write the left- 
hand-side of (2.18) as 

f d 2k 22Vkf(k)'Vkf(k) 
I = - - 2  (27Z)2 (22 + if(k)12) 2 

(2.19) 

where f ( k ) =  1/h(k) is defined by (2.3) and therefore is an analytic function 
of kx + ik.,. Using for f (k)  the simpler notation f (kx  + iky), we obtain 

_ 2 c d k x d k y  222 If'l 2 
I =  L (2~)2 (;~2+ 1fl2)2 (2.20) 

We can now make a change of variables from (kx, ky) to ( P = R e  f, 
Q = I m f ) .  The Jacobian of this transformation is If'l 2, and, up to a 
multiplicative constants, f is the elliptic function sd, which provides a 
one-to-one mapping from the domain N' onto the whole complex plane. 
Therefore, (2.20) simply becomes 

fo~ foo dP dQ 2). 2 1 
I =  - 2  -oo -~o (22)2 ().2 + p2 + Q2)2 rc (2.21) 

which proves (2.18). 
Moreover, since 

(a/akx) f(k~ + iky) = -i(a/aky) f (kx  + iky) 
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if in (2.18) we split ( r j - r / )  2 into (xj-xi) 2 and (yj-yi) 2, each term gives 
the same contribution to /. Therefore, the charge charge correlation 
function carries no quadrupole moment, even when the lattice is not 
symmetrical in x and y (r ~ 1). This absence of quadrupole moment is in 
agreement with more general screening rules. (9) 

The conclusion of the present section is that the lattice model of the 
Coulomb gas obeys the screening rules of a conductive phase at F =  2. The 
screening, which is a long-range effect, is not spoilt by the short-range 
forces simulated by the lattice. 

2.5. P a r t i c l e - H o l e  S y m m e t r y  

In a lattice model such as the present one, with a maximum density 
2ps, we expect the densities p and 2ps-p to be related by a particle-hole 
symmetry. We can show that indeed the correlation functions have very 
simple symmetry properties under the transformation p ---, 2 p s -  p. 

Using the relations 

sd(~ + it/) = - s d ( -  ~ - it/) = sd(~ - it/) 

we can rewrite p and the B functions as integrals on one quadrant of ~ [-in 
(2.14) and (2.15) we use r=(x, y) for r j - r i ] :  

2f l iCK 1 P = ~-5-~--j2 d{ dt/1 _]_ /.,/--2 ]sd({ + it/)12 

1 I K d~ dr/ /~-2 2 
B+ +(r) =K~o2 ~o 1+ Isd(g + it/)l 

(2.22) 

x cos ix  cos t/y (2.23) 

B+ (r) = 2--K-yj2 d~ dr/1 + g_2 ]sd(r + it/)l 2 

x{sd(~+it/)sinI~-~o(~x+t/Y) ] 

§ . q }  ,224, 

In (2.23), x/co and ry/c~ are integers; in (2.24) they are half-integers. The 
maximum density 2ps=2z/r 2 is obtained as /~--* oo. Since, under a 
symmetry with respect to the point (K/2)+ i(rK/2), sd obeys the relation 

i 1 
sd(K + irK -- u) = (2.25) kk' sd(u) 
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[k' is the complementary modulus (1 -k2)1/2], it is readily seen that, under 
the transformation/~ ~ 1/kk'#, p is transformed into 2p~-  p, while 

B+ +(r; #) = ( - 1) (x +'y)/~ + 1 B+ +(r; l/kk'p) (2.26) 

B+ (r; #) = i ( -  )(x + Ty)/o B+ _(r; 1/kk' t~) (2.27) 

Therefore, the n-body truncated densities are simply unchanged if n is even 
or change sign if n is odd, as expected. 

The lattice is exactly half-filled ( p = 2 p s - p )  at the symmetry point 
#2= 1/kk'. For this value, one finds that B++ and ,,(2)T vanish on the ,-++ 
sublattice where ( x +  r.y)/co is even, while ,~(2)r remains negative on the Y + +  

other sublattice where (x+'cy)/co is odd. This means that like particles 
show some (imperfect) tendency to order themselves in a superlattice, 
occuping one site out of two. 

3. PARALLEL LINE M O D E L  

3.1. Def in i t ion of the Model  

It would be more convenient to have a solvable model in terms of 
elementary functions only. In Gaudin's lattice model, the appearance of an 
elliptic function reflects the double periodicity of the lattice in both the x 
and y directions. We found that this elliptic function is replaced by a 
trigonometric function if we slightly alter the model in such a way that it 
has a finite periodicity in only one direction. This simplification can be 
made without bringing about any divergence, by considering a model in 
which the charges of the same sign are constrained to move on lines which 
are parallel to the y axis, with the positively and negatively charged lines 
alternating and separated by the distance 0)/2. On this more tractable 
model, we are able to study in some detail the asymptotic behavior of the 
correlation functions and its dependence on the density. 

3.2. Pressure, Density,  and Corre lat ion Functions 

The line model may be obtained from the lattice model by making the 
length of the primitive cell edge parallel to the y axis go to zero. The grand 
partition function still has the remarkable structure (2.1) and the pressure, 
density, and correlation functions are given by (2.4), (2.5), (2.11), (2.14), 
and (2.15), where h(k) now reads 

f+ 2 a [ )1 h(k)=  Z ~ ~ ~ d Y l c o m + ~ e x p  - i  k x m + k y y  
m 

(rn o d d )  2a[ o ,]1 
= - i - - ~  sin (kx+iky  (3.1) 5 
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Then, rescaling 2 into z = 2a21/2n2/co, we find for the pressure 

fn/~ dk x r+~ dky 1 1 _ -1] - v -  j -z-- n[  + z2(ch cgk v cnkx) (3.2) flP='~-n/co z;g -~  Z/~ --COS 

After integrating over kx, we find for the density 

4 2fo+~do:[(ch2o~q._z2)21]_l /2  p = ~o)----- 2 z 

= (3.3) 
2 2 F ( s i n _ l  [ z2 "]1/2 I 4 ~1/2~ 

rcco--- 7 k2--~z2j , 1 - 7a j / if Z 2 > 2 

where F(q), k) is the elliptic integral of the first kind; the two expressions 
(3.3) define the same analytic function of the fugacity z, in different 
domains. The truncated two-body densities are 

and 

p(2)T(y + +,- .  y)  = p ~ T ( x ,  y)  

n 2 co 4 [ 3 _ ~  [ g ( a ) 2 _  131/2 

• [ G ( ~ ) ] l x / ' ~  2 (3.4) 

p~7(x, y)= p~7(x, y) 
1 1 z2]f +~ ?l/2-e-~[G(ot)]- '/2 

= -~ - ~  -~ _ ~ d~ e~ [ G ( cQt_ g( o~ ) 2 _ 131/2 

• [G(~)3lx l /~  2 (3.5) 

where g(~) = ch 2~ + z 2 and G(~) = g(c0 - [g(c0 z -  131/2. For  the same 
reasons as in Section 2, the sum rules are satisfied (in particular, the two- 
body truncated density carries no quadrupole moment, in spite of the high 
anisotropy of the model) and the system is in a plasma phase at F =  2. 

3.3. Asymptotic Behavior of the Two-Body Correlations 

For studying the asymptotic behavior of the correlation functions, we 
have to distinguish two cases, namely whether r is in the direction perpen- 
dicular to the lines or not. 
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(i) In the first case, p~)r+(x, 0) is given by (3.4) with y = 0 ;  g2(~)_ 1 
does not vanish on the real axis and G(c~) is maximum at e = 0 .  This 
maximum governs the asymptotic behavior, which turns out to be a mere 
exponential decay for every fugacity z: 

where 

1 Z 3 1 ( Ixl ) (3 .6)  
p~)r+(x, O) I~l ~ ~ 2~ (Z 2 + 2) 1/2 CO3 IXt exp -- l~(z)J 

On the other hand, 

co in 1 ~-~ /l(z) = 5 ~ [ z - ( z 2 + 2 ) l / 2 ]  z 

p? T(x, o) x x o) 

At high density, the fugacity z goes to infinity, the average distance 
between particles on the same line is 

( d )  = 2/cop ~ ~ rcco/ln(2z 2) 

whereas 
ll(z) z ~ co/[2 ln(2z2)] 

Thus the correlation length along the x axis is proportional to the average 
distance between particles along a given line in the y direction. 

(ii) In the second case, that is, when the angle 0 between r and the 
normal to the lines does not vanish, 

1 z 4 { f f ~ d ~  exp[2rF(c~,O)/co]} 2 
p ~ ( r ,  0 ) -  (~coa)z c~ [g(~)2_ 1],/2 

1 z 2 f + ~  do exp[2rF(o:,O)/co]A(e)2 
0)-  ( co2)2 2 131/2 

where A(~)=e~[G(~)]I/2-e-~[G(~)] 1/2 has no singularity. It can be 
checked that the contribution of possible saddlepoints on the cut 
originating from a zero of g(e) 2 -  1 has a faster exponential decay than the 
contribution of the branch point. Of course we have to take into account 
only the branch points with a positive imaginary part which are closest to 
the real axis, as shown on Fig. 2. After calculations, we find correlation 
functions whose behavior changes when za= 2: 
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Z2<2 

,o~1 ct3 

Z2=2 . . . . . .  t . . . . . . . . . .  1 
c~ 4 c~ o o~3 

0 

Z2>2 

0S4 0(2 0 ~/~'t 0('3 . 

Fig. 2. Location of the branch points and cuts near the real axis, in the c~ complex plane (in 
the upper half-plane), for different values of the fugacity. These branch points determine the 
asymptotic behavior of the correlation functions. For  z 2 < 2, only cq contributes; at and ~2 get 
closer to each other as z 2 --* 2. For z z = 2, c%, c%, and c~4 all contribute; % is a pole that results 
from the coalescence of the branch points cq and c~ 2. For z2>2 ,  ~1, 0~2, 0~3 and ~4 all 
contribute. 

where 

I f  z 2 < 2  

{2)r 1 z 3 1 ( lY[ '] 
p++(x, y) r~- '  - -  2g (2--Z2) 1/2 co3r exp --/2-~,]  

p?~(x, y ) r ~  -p?~(x, y) 

(D 

(3.7) 

/2(Z) : 2 cos- 1(1 - z  2) 
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If z 2 = 2 

Pt2+)r+ (x' Y) r ~  - -4~4  exp ( - lyl~/2minj 

x {1 -- \~Sj{2"~l/4c~ 

p~)r(x, y ) ~  4 exp - -  /2rain, ] 

5 ( 2 )1/4 sin{~/4 + [(ch-13)/CO] lyl }]2 
X 

[1 + \~--Sj (r/CO)i/2 J 

(3.8) 

where /2min = CO/27z. We still have 

lim [p(Z+)r(X, y)/p(Z)r(x, y)]  = - 1  
r ~ o v  

but now the oscillatory corrections to [ - -  ~0(2)T+ + ] 1/2 and [p(2)r+ ] J/2 are shifted 
by a phase factor .~/2. 

If z 2 > 2  

2 z3 1 / 
/2mini 

X "(Z 2 --2)1/4 COS CO ]Yl -- 

(Z2 + 2) 1/4 COS " CO I Y] + 

( I,I) 
p~)r_(x, y ) r ~  2 z  3 ~  exp - -  /2rnin// 

+ (z2+2)l/2sin 2 ch -~ +1  , +:1} 

(3.9) 

W h e n  z 2 <  2 the correlation length 12 is a decreasing function of the 
density. At z 2 = 2, l 2 reaches a minimum value co/2n which only depends on 
the spacing between the lines, and l z keeps that same value at higher 
densities; thus, the decay is sensitive to a microscopic feature, namely the 
period of the line array. Furthermore, when z 2 < 2 the correlation function 
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behavior is a mere exponential decay, whereas at Z 2 =  2 an oscillatory 
correction appears [and the decay is e x p ( - [ y [ / l )  instead of 
r - l e x p (  - [yl/l)]; for higher densities, p~)r+(x, y) Ep{2+~(x, y) ]  has an 
oscillatory exponential decay with four (two) frequencies O ( z ) =  
(2/co) c h - l ( z  2 -  1), f2 ' (z )=  (2/09) ch-~(z2 + t), (s + f2')/2, and ( f 2 ' - 0 ) / 2  
(f2 and f2'), the first three being increasing functions of the density. When 
z>>l, 

~2(z) ~ t'2'(z) ~ (2/09) ln(2z 2) ~ 2zc/(d> 

When the average distance ( d )  between particles on the same line 
becomes negligible compared to the spacing co between the lines, the 
periodicity of the oscillations involves the average distance ( d )  (which also 
is proportional to the correlation length ll along the normal to the lines). 
There is a tendency to a kind of damped crystal ordering, not unlike what 
happens in a related one-dimensional model. ~m) Incidentally, we recover 
this one-dimensional model (particles of the same sign on one line) by 
taking the limit z---, ~ at fixed ( d )  and y; this implies co ~ ~ ,  i.e., the 
other lines go away to infinity. Then, the limit of the two-body truncated 
linear density is 

lim [ co2p~(0 ,  y ) ]  = - 1 -cos(2zcy/(d)) (3.10) 
z ~ oo 2 ~ 2 y  2 

and this indeed is the one-dimensional result. 
Finally let us consider the low-density limit (which will be further 

studied in the next section). Then z and o~ go to zero in such a way that 
lo(z) = 2-3/2(J)/z remains finite. If we first make r go to infinity and then z to 
zero, we obtain 

1 1  (Jyl  
IP~)+r( x, Y)I ~ 8~ (2lo) 3 exp - Io J 

+ -  (3.11) 1 1  ( Ixj3 
Ip~)~+(x, 0)[ ~ 8re (2lo) 3 exp - lo J 

+ _  

whereas if we first make z go to zero and then r to infinity, 

IP~T(X' Y)[ 8~ (210) 3 exp -- (3.12) 
+ - -  

Thus the two limits do not commute and only the first procedure keeps a 
memory of the anisotropy of the initial discrete model. 
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The motion of the branch points discussed with regard to Fig. 2 has 
some similarity with a possible mechanism (H) for the appearance of 
oscillations in the correlation function of a three-dimensional plasma. 

4. THE C O N T I N U U M  LIMIT 

As the lattice spacing co goes to zero, the lattice model is expected to 
go over to a simpler continuum model, in which a particle can occupy 
any position in the plane. The dimensionless parameter that describes 
the density is pco2; thus, the small-co limit is also the low-density limit 
considered by Gaudin. (6) In terms of the dimensionless fugacity /~, it is a 
small-/, limit. 

4.1. Density and Pressure 

For studying the continuum limit, we introduce a rescaled fugacity 
m = rt#/Kco =2rtaz2/co2; m has the dimensions of an inverse length, and 
m 1 will be found to be a correlation length. It will be convenient to study 
the limit co --+ 0,/~ ~ 0 at a finite value of rn. The density (2.5) can also be 
written as 

d2k #2 

p = 2 fe  (2~) 2/t 2 + Isd((Kco/Tr)(kx + iky))t 2 (4.1) 

At small ~, the integral in (4.1) is dominated by the small values of Isdl 2, 
which are obtained for (ok small; since, for small u, sd u ~ u, 

fk d2k m2 
p ~ 2 k2 (4.2) <,o I (2rg) 2m 2+ 

For obtaining a finite result, it is necessary to keep in (4.2) the cutoff in k 
spac e at k ~ 1/co. The appearance of a divergence when co is strictly zero is 
of course related to the collapse of pairs discussed in the Introduction. 
Keeping the cutoff, one finds 

P = 2 7  In m--5~m2 + ~ (4.3) 

where C is a numerical constant. A result of the form (4.3) can also be 
obtained starting from the line model. It should be noted that, in the 
present low-density limit, pro 2--+0 and p m - 2 ~  o% namely the average 
interparticle distance becomes large compared to the lattice spacing (low 
density), but it becomes small compared to the correlation length (despite 
its tendency to collapse into bound pairs, the system manages to have 

822/49/1-2-4 
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screening properties, but many particles are needed for achieving the 
screening of a given particle). 

The pressure can be obtained either from (2.4) or by integrating p = m 
~(flp)/Om, with the result 

f lp=--~ In + 1 +o(1)  (4.4) 

Both p and tip depend on the cutoff co and diverge if co -~ 0 at fixed m. 
However, the ratio flp/p has a well-defined limit 

fip/p ~ 1/2 (4.5) 

This result (4.5), at F =  2, is in agreement with the equation of state for 
point particles at F <  2, obtained from a scaling argument (1) 

t ip=p(1 - F/4) (4.6) 

4.2. Correlations 

In contrast to the one-body density (4.3), the n-body truncated den- 
sities (n >~2) have the very remarkable property of going to well-defined 
limits as the cutoff co vanishes for a fixed m. The B functions (2.14) and 
(2.15) simply become, in terms of integrals on the whole k plane, 

dZk  m 2 
B ( r ) = f  ++ (2n)2mY--~k2exp( - ik ' r )  

m 2 

= 2--7 K~ (4.7) 

( r ) = f  d2k m ( - i k x - k Y )  B+ _ (2n) 2 m2 + k2 e x p ( -  ik .  r) 

m 2 
= 2n [ exp ( - i 0 ) ]  Kl(mr ) (4.8) 

where r = r j - r  i and 0 is the polar angle of r; Ko and K1 are Bessel 
functions. The two-body truncated densities are 

2"~ 2 
Pt~)r+ (r) = - \ ~n J K~~ (4.9) 

(mT 
P(+Z)r(r) = \-2-~nn J K~l(mr) (4.10) 
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They have exponential asymptotic behaviors as r --* Go : 

m 3 
e -2mr (4.11) - p ~ p )T(r) 

and therefore m-~ is indeed a correlation length. Higher order densiUes can 
also be obtained in terms of the B functions (4.7) and (4.8), by using (2.12). 

The simple forms (4.7) and (4.8) could also have been obtained by 
using the equivalence between the Coulomb gas at F =  2 and a free Fermi 
field 2 (see Appendix B). 

The logarithmic behavior of p~)r+(r) at small r can be understood as a 
limiting case of the r 2 - r  behavior (12a3) which occurs for 1 < F <  2. 

4.3. Charged,  Hard Disks 

We expect the properties of a Coulomb gas at low density to be insen- 
sitive to the details of the short-distance cutoff. Therefore, the results in this 
section, starting from a lattice model, should also be applicable to a system 
of charged, hard disks of diameter a in the limit where p a  z is small. Only 
the constant C in (4.3) and (4.4) will depend on the details of the cutoff. 
Thus, we consider a system of charged, hard disks at F =  2 and at low 
density, with the purpose of computing the internal energy and the specific 
heat. 

We make the heuristic assumption that the leading terms in the low- 
density expressions of the density, energy, and specific heat are correctly 
given by using the zero-density correlation functions (4.9) and (4.10) 
outside the hard core; of course, inside the hard core, the two-body 
untruncated densities just vanish. 

Our control parameter is the fugacity m, in terms of which the 
one-body density can be obtained by using the perfect-screening rule (2.18), 
which reads here 

= 2 ~ 2~ dr r E p ~ ( r )  - p ~ ( r ) ]  (4.12) p 

Using (4.9) and (4.10), we find 

p = - - ~  ln~m 7 + o ( 1 )  (4.13) 

2 This equivalence has been nicely explained by Nicolaides./141 However, Nicolaides has 
defined renormalized quantities whose physical meaning is not apparent, at least to us. 
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where 7 = 0.5772 is Euler's constant. Equation (4.13) is indeed of the form 
(4.3), with a now playing the role of co. The pressure (4.4) can be written 

tip = p/2 + mZ/4n + o(1) (4.14) 

It can be checked that (4.9), (4.10), (4.13), and (4.14) satisfy the virial 
theorem 

tip = �89 + ~a2Ep(2+~(a) + p ~ ( a )  + p2/2] (4.15) 

and the compressibility sum rule 

0p 
p ~ = p  + 2 f a=r [p(2+)r(r)+ p ~ ( r ) ]  (4.16) 

up to the requested order m 2. We also find 

h+ + ( a ) =  (2/p) 2 p(2+)T+(a)= --1 + O(1) (4.17) 

as expected because of the Coulomb repulsion. 
The excess internal energy per particle is 

u = ( l /p)  2~ dr r[p~)T(r)- p ~ ( r ) ]  e 2 ln(r/a) (4.18) 

Using (4.9), (4.10), and (4.13), we find 

u = �88 2) - 7  + o(1 )] (4.19) 

The excess specific heat at constant volume, per particle, is 

c~ = - - -  4 (4.20) 
P m (Op/c~m)~ J 

The second term in (4.20) appears because, at constant volume, the 
fugacity m varies with the temperature; this term can be computed by using 
(4.13) and (4.19). As to the first term in (4.20), it can be expressed as a 
fluctuation of the potential energy, which can be written in terms of the 
truncated densities: 

e4\ M )= 

= f  d 2 r [ P ~ ( r ) + P ~ ( r ) ] ( l n r )  2 
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+ 2 f d2r2 d2r3 Lr+++I-n(3)T ( r l ,  r2,  r3) + P(+3)-r-(rl ,  r2,  r3) 

-2p(+3)+ T_ (rl, r2, r3)] In r12 in rl---23 
a a 

1 ~n(4)T r4 ) + p ( + 4 ~ _ _ ( r l ,  r2 ' r3 ' r4 ) + ~  f d2r2 d2r3 d2r4 (~- + + + +(rl, r2, r3, 

+2p~)T+ (r,,r2, r 3 , r 4 ) - 4 p ~ +  (rl,r2, r3, r 4 ) + 4 I p ~ ( r , , r 3 )  

- p~)T(rl, r3) + 

+26( r2 - - r4 ) l }  lnr121nr3-Aa a (4.21) 

By inspection, it can be seen that only the first integral in (4.21) gives a 
contribution to cv that is not o(1). Using (4.9) and (4.10), one finally finds 

cv=g  ln~rm 7 ~ In -~/ - ~ + O  (4.22) 

The neglected terms in (4.19) essentially come from the hard core of a 
third particle, and they are expected to be of order /90 -2 (times, perhaps, 
some logarithm), while in (4.22) we have neglected terms of order 
(ln0-m) i. These theoretical low-density results can be compared to 
numerical values obtained in a recent simulation. (15) This is done in 
Table I. It should be noted that, even for the lowest densities used in this 
simulation, although p a  2 and m2a 2 are very small (~  1 0 - 3 ) ,  the logarithm 

Table I. Excess Internal Energy per Particle and Excess 
Specif ic Heat per Particle a 

U/C 2 C v 

m2o-2/4 
7zpa2/4 (theory) Theory Simulation Theory Simulation 

5 x 10 -4 1.2806 • 10 -4 0.976 0.972(5) 1.4 2.0(2) 
5 x 10 -3 1.970 x 10 -3 0.634 0.639(2) 0.3 0.9(1) 

The zero of energy is determined by the choice a = a. 
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of 2/ma is not much larger than 1. This explains why the energy (4.19) is in 
excellent agreement with the simulation results, while the specific heat 
(4.22) is not so good for these finite densities. 

5. C O N C L U S I O N  

For a system of point particles (no hard core), a collapse occurs for 
F ~> 2, and the internal energy per particle becomes divergent. However, the 
specific heat per particle is expected (x) to remain finite for F > 2 ,  and is 
given by an independent pair description; its excess value is 

co = 1 + �89 - 2 / r )  (5.1) 

A similar expression should also be valid, asymptotically, as F -~  2 - .  Thus, 
the specific heat has an infinite peak at F = 2. 

When a hard core is introduced, no collapse occurs, and F =  2 is no 
longer a singular point. However, at low density (pa 2 small), the specific 
heat still has a (now finite) peak near F =  2 [increasing pa 2 rounds this 
peak more and more, are seen in the numerical simulation(15)]. In the 
present paper, we have computed c~ at F =  2 for small pa 2. The leading 
terms of u and c~ can be obtained very simply by the same independent 
pair description that leads to (5.1); one just writes the partition function of 
a pair as 

f~ < r <m-~ d2r exp[ - -Fin(r /a)]  

where an upper cutoff has been made at some correlation length m - 1. This 
pair model also gives the equation of state/~p = p/2. 

Nevertheless, at F = 2 ,  the system is a conductor. The correlation 
functions obey the screening sum rules and they have an exponential decay 
at large distances. 

Thus, at F = 2 ,  the two-dimensional Coulomb gas exhibits com- 
plementary features. It has the energetics of paired particles and the 
correlations of an ionized system. 

A P P E N D I X  A 

We come back to the lattice model, now in the weak coupling limit 
F ~ 0. For  dealing with this case we build a kind of Debye-Hiickel theory, 
suitably modified, however, for taking into account the existence of a 
maximum total number density 2ps. 



On the Two-Dimensional Coulomb Gas 53 

In terms of a fugacity 2, the average occupation number of a site is 

n =2/(1 +2 )  (A.1) 

If now a positive particle is fixed at the origin, the average electrostatic 
potential on the site at r is changed by O(r) and, in a mean-field theory 
approach, the average occupation number of this site is changed by 

1 1 
~in(r) = 2-1 exp[ +_ fielp(r)] + 1 •-1 + 1 (A.2) 

[-the _+ sign in (A.2) must be taken as + ( - )  for a site on the positive 
(negative) sublattice]. Linearizing (A.2) with respect to eO, we find 

_ 6n(r) = n(1 - n) fietfl(r) (1.3) 

The following is the same as in the standard Debye-Hiickel theory. Since 
the correlation length will turn out to be large compared to the lattice 
spacing, we can write the same Poisson equation as in the continuum 

d~(r)  = - 2 x [ e  6(r) ___ e p s  6n(r)] (A.4) 

and we obtain from (A.3) and (A.4) the usual equation 

[A + ~:2] O(r) = -27re 6(r) (A.5) 

except that the Debye length ~ ~ is now defined by 

~c 2 = 2~z f l e2p(1  - -  p / 2 p  s) (A.6) 

This expression clearly exhibits the expected particle-hole symmetry. The 
correlation length ~c ~ is minimum for a half-filled lattice. 

The solution of (A.5) is the two-dimensional Debye screened potential 

O ( r )  = eKo(~Cr)  (1.7) 

A P P E N D I X  B 

The equivalence between the two-dimensional Coulomb gas and a 
Fermi field model is usually proved through their common equivalence to 
the sine-Gordon theory. (3 5,~4) In this Appendix we directly show the 
equivalence between the Coulomb gas and a free Fermi field, at F =  2. 

The key point is that, in the continuum limit, the matrix K in the 
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grand partition function (2.1) of the Coulomb gas is very simply related to 
the operator 7~c~ (here represented as axOx + aye?y) of a fermion in a two- 
dimensional Euclidean theory. In the continuum limit, it is convenient to 
introduce isospinors and to characterize a positive particle located at point 
z by 

and a negative particle by 

In this notation, the operator K and a related operator R are represented 
by 3 

<zil R ]zj) = <zil K Izj> = crx + i~ry arm-2 
2 z i - z j  

ax - iav arm--2 
- -  q " ( B . 1 )  

2 2,-eTj 

where the cr are Pauli matrices operating upon the isospinors. By taking the 
Fourier transform of 

[ --i(axkx + r -1 = i(crxk x + ~ryky)/(k 2 + k~) 

it is straightforward to show that 

K =  21taro-2(Gx(~ x -~ (~y(~ y ) -  1 (B.2) 

Now, with a fugacity that depends on the position and charge [2+ (z) 
and 2 (z) are the fugacities of the positive and negative particles, 
respectively], the grand partition function (2.6) of the Coulomb gas can 
be written as 

Z = D e t { 1  + A }  

= Det {1 + [2+(zi) 1 + ~rz 1-azl  --T-+,~ (zi)-T--j <z;I ~: Iz+> } (B.3) 

3 A factor zoo -2 appears when discrete sums are replaced by integrals in the continuum limit. 
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or, using (B.2), 

{ [  l+~r~ 1 - a ~ 7  
Z = D e t  ~rx~?x + a,~, + rn + ( r ) - - ~  + m_ ( r ) - - - ~ J  

x (~xc~x + ay0y) -I } (B.4) 

where m-+ = 27carco-22__ is a rescaled fugacity. On the other hand, the par- 
tition function of a Euclidean two-dimensional Fermi field with an external 
coupling that distinguishes the two components of its spinors is 

+ - - - ~ - - m + ( r ) +  m (r) 0 

=De t  ~ x c ? x + a y @ + @ m + ( r ) + - - ~ m _ ( r )  (B.5) 

where ~ and ~ are two-component Grassmann variables, and therefore the 
equivalence relation is 

Z = Z F E m ] / Z F [ O ]  (B.6) 

The two components of the spinors of the Fermi field correspond to the 
two components of the isospinors of the Coulomb gas. 

The correlation functions of the Coulomb gas are obtained by taking 
derivatives of In Z with respect to 2+(z), while the Green's functions of the 
Fermi field are obtained by taking derivatives of In ZF with respect to 
m-+(r). The basic B functions (4.6) and (4.7) of the Coulomb gas are the 
propagators of the Fermi field, and the correlation functions of the 
Coulomb gas can be expressed in terms of cycles of B functions as the 
Green's functions of the Fermi field can be expressed through Wick's 
theorem in terms of cycles of propagators. 
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